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Artem Polyvyanyy

Abstract This chapter gives a brief introduction to the research area of process
querying. Concretely, it articulates the motivation and aim of process querying,
gives a definition of process querying, presents the core artifacts studied in process
querying, and discusses a framework for guiding the design, implementation, and
evaluation of methods for process querying.

1 Introduction

A business process is a plan and coordination of activities and resources of an organi-
zation that aim to achieve a business objective [22]. Business Process Management
(BPM) is an interdisciplinary field that studies concepts and methods that support
and improve the way business processes are designed, performed, and analyzed
in organizations. BPM enables organizations to systematically control operational
processes with the ultimate goal of reducing their costs, execution times, and failure
rates through incremental changes and radical innovations [7, 22].

Over the last two decades, many methods, techniques, and tools have been devised
to support BPM practices in organizations. Use cases addressed by BPM range from
regulatory process compliance, via process standardization and reuse, to variant
analysis, process instance migration, and process mining techniques for automated
process modeling, enhancement, and conformance checking based on event data
generated by IT systems. Despite being devised for different use cases, BPM ap-
proaches and tools often rely on similar underlying algorithms, process analysis
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techniques, and constructed process analytics. For example, process compliance,
standardization, reuse, and variant analysis methods rely on algorithms for retrieving
processes that describe a case with conditions that capture a compliance violation
or a process fragment suitable for standardization, variant identification, or reuse
in fresh process designs. Process instance migration and process compliance may
further rely on techniques for automatically augmenting processes, such as resolving
the issues associated with the non-compliance of the processes or adaptation of a
long-running process instance from the old to a new process design.

Process querying aims to identify core algorithms, analysis, and analytics over
processes to promote their centralized development and improvement for later reuse
when solving practical problems concerned with the management of processes and
process-related artifacts, like resources, information, and data. We refer to such
core process-related computations as process querying methods. Process querying
multiplies the effect of process querying methods in different use cases and suppresses
reinventions of such methods in different contexts.

The remainder of this chapter is organized as follows. The next section elaborates
on the aim of process querying and gives definitions of process querying and a
method for process querying. Then, Section 3 presents a framework for devising
process querying methods. The framework consists of abstract components, each
with well-defined interfaces and functionality, that, when instantiated, result in a
concrete method for process querying. The chapter closes with conclusions that also
shed light on the directions for future work in process querying.

2 Process Querying

This section discusses the objective and the definition of the research area of process
querying and rigorously defines the concept of a process querying method.

2.1 Objective

Process querying aims to support systematic improvement and reuse of methods,
techniques, and tools for manipulating and managing models of processes, either
already executed or designed existing or envisioned processes, and process-related
resources, information, and data. The need for scoping the area of process querying
has emerged from numerous observations of non-coordinated efforts for developing
approaches for automated management and manipulation of process-related artifacts
in the research disciplines of BPM [7, 22] and process mining [1]. To name a few,
examples of research problems studied in BPM that fall in the scope of process
querying include process compliance, process standardization, process reuse, pro-
cess migration, process selection, process variance management, process selection,
process discovery, process enhancement, and correctness checking [16]. Existing
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solutions to these problems often rely on techniques that share algorithmic ideas
and principles. Hence, instead of conducting scattered, in silos, studies, with pro-
cess querying we propose to identify and study such central ideas and principles to
improve and reuse them when solving practical process-related problems. Though
process querying emerges from the research disciplines of BPM and process min-
ing, we envisage its application in other process-related fields, including software
engineering, information systems engineering, computing, programming language
theory, and process science.

2.2 Definition

Process querying emerges at the intersection of research areas concerned with model-
ing, analysis, and improvement of processes. Before giving our definition of process
querying, we discuss several such areas and their relation to process querying.

Big data. Big data studies ways to analyze large datasets. Here, we usually speak
about datasets that are too large to be analyzed using traditional techniques. Process
querying also researches ways to analyze extremely large datasets but is primarily con-
cerned with datasets that comprise event data, e.g., executions of IT systems, records
of business processes, user interactions with information systems, and timestamped
sensor data. In addition, process querying deals with descriptions of potentially
infinite collections of processes.

Process modeling. A process model is a simplified representation of a real world or
an envisioned process, or collection of processes, that serves a particular purpose
for a target audience. Process modeling is a technique to construct a process model.
Process querying studies techniques that support instructions for automated and
semi-automated process modeling. Examples of such instructions include removing
or inserting parts of a process model to ensure it represents the desired collection of
processes for the envisaged purpose and audience.

Process analysis. Process analysis studies ways to derive insights about the quality
of processes, including their correctness, validity, and performance characteristics.
Process querying relies on existing and studies new process analysis techniques to
retrieve existing and model new processes with desired quality profiles. For instance,
a process query can specify an intent to retrieve all processes with duration in a given
range or augment process designs to ensure their correct future executions under new
constraints.

Process analytics. Process analytics studies techniques for computational and statis-
tical analysis of processes and the event data they induce. It is also concerned with
identifying meaningful patterns in event data and communication of these patterns.
Process querying relies on and extends process analytics to apply it when retrieving
and manipulating processes and related artifacts. An example of such synergy be-
tween process analytics and querying is an instruction to retrieve and replace process
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patterns that lead to negative overall process outcomes with the patterns that were
observed to result in positive outcomes.

Process intelligence. Process intelligence studies ways to infer insights from pro-
cesses and the related resources, information, and data for their subsequent use.
Examples of such insights include causes for poorly performing or unsuccessful
process executions, while sample uses of the inferred insights include reporting and
decision-making.

The definition of process querying is an evolving concept that is continuously
refined via an iterative process of embracing and solving practical problems for
retrieving and manipulating models of process and process-related artifacts. The
current snapshot of this definition is given below:

Process querying combines concepts from Big data and process mod-
eling and analysis with process analytics and process intelligence to
study methods, techniques, and tools for retrieving and manipulating
models of real world and envisioned processes, and the related resources,
information, and data, to organize and extract process-related insights
for subsequent systematic use.

Therefore, the idea of process querying is to systematically extract insights from
descriptions of processes, e.g., event logs of IT systems or process models, and the
associated artifacts, e.g., resources used to support process executions, information
capturing the domain knowledge, and data generated during process executions,
stored in process repositories of organizations using effective instructions captured
in process queries implemented using efficient techniques. Consequently, the task
of process querying is to design those effective and efficient process queries over a
wide range of inputs capable of delivering useful insights to the users.

2.3 Methods

Processes are properties of dynamic systems, where a dynamic system is a system that
changes over time, for instance, a process-aware information system or a software
system. A process is an ordering of events that collectively aim to achieve a goal
state, where a state is a characteristic of a condition of the system at some point in
time. In other words, a state of a process specifies all the information that is relevant
to the system at a certain moment in time. An event is an instantaneous change of
the current state of a system. An event can be distinguished from other events via
its attributes and attribute values, for example, a timestamp, event identifier, process
instance identifier, or activity that induced the event.

Let Uan be the universe of attribute names. We distinguish three special attribute
names time,act,rel ∈Uan, where time is the “timestamp”, act is the “activity”, and
rel is the “relationship” attribute name. Let Uav be the universe of attribute values.
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Event. An event e is a mapping from attribute names to attribute values such that
each attribute name that participates in the mapping is related to exactly one
attribute value, i.e, e : Uan ⇀ Uav.

By E , we denote the universe of events. Similar to attribute names, we identify three
special classes of events. By Etime, we denote the set of all events with timestamps,
i.e., Etime = {e ∈ E | time ∈ dom(e)}. By Eact , we denote the set of all events with
activity names, i.e., Eact = {e ∈ E | act ∈ dom(e)}. Let Urel = P(E )×P(E ) be
the set of all possible pairs of sets of events, where P(E ) is the power set of E ,
such that Urel are possible attribute values, i.e., Urel ⊂ Uav. Then, Erel is the set
of all events that assign a value from Urel to its relationship attribute, i.e., Erel =
{e ∈ E | rel ∈ dom(e) ∧ e(rel) ∈Urel}.

For example, e= {(case,120328),(time,2020-03-27T03:21:05Z),(act,“Close claim”)}
is an event with three attributes. A possible interpretation of these attributes is that
event e belongs to the process with case identifier e(case) = 120327, was recorded
at timestamp e(time) = 2019-10-22T11:37:21Z (ISO 8601), and was generated by
the activity with name e(act) = “Close claim”.

Process. A process π is a partially ordered set (E,≤), where E ⊆ E is a set of events
and ≤⊆ E×E is a partial order over E, i.e., ≤ is a reflexive, antisymmetric, and
transitive binary relation over E.

A process describes that certain pairs of events are ordered. Note that every pair of
related, by a process, events specifies that the first event precedes the second event,
while for any two unrelated events, their order is unspecified. It is a common practice
to interpret two unordered events as such that may be enabled simultaneously or
occur in parallel, refer to [15] for details.

A process that is a total order over a set of events is a trace.

Trace. A trace τ is a process (E,<), where < is a total order over E.

A behavior is a collection of processes in which the same process may appear several
times to denote the fact that it can be, or was, observed multiple times.

Behavior. A behavior b is a multiset of processes.

By B, we denote the universe of behaviors.
Behaviors can be described in conceptual models. According to Lindland et

al [13], a conceptual model consists of an explicit model component and an implicit
model component. The explicit component is the set of all statements explicitly made
using some modeling language, whereas the implicit component is the set of all
statements that can be derived from the explicit component using deduction rules of
the modeling language.

We refer to a conceptual model that describes behaviors as a behavior model. Let
A ⊂ Uav be the universe of activities. Let Ums be the universe of explicit model
statements. Then, M = P(A )×P(Ums) is the universe of activity models, a
special class of explicit components of behavior models, where each activity model
is a pair composed of a set of activities and a set of model statements that compose
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the activities into the model. By �= (∅,∅), � ∈M , we denote the empty model,
the model without activities and statements.

We define four classes of behavior models based on their explicit and implicit
components. These four classes are due to the requirements identified in [17].

Behavior model. A behavior model is a pair (M,B), where M ∈M is an activity
model and B⊆B is a set of behaviors.

• An event log is a behavior model (�,{b}), where b ∈B is a finite multiset of
finite traces over Eact , i.e., the activity model is empty and only one behavior is
specified.

• A simulation model is a behavior model (M,{b}), where M = (A,S) ∈M is a
nonempty model and b ∈B is a finite multiset of finite processes over Eact such
that for every event e in a process in b it holds that e(act) ∈ A.

• A process model is a behavior model (M,B), where M = (A,S) ∈M is a
nonempty model and every b ∈ B is a set of processes over Eact \Etime such
that for every event e in a process in b ∈ B it holds that e(act) ∈ A.

• A correlation model is a behavior model (M,B), where every b ∈ B is a multiset
of processes over Erel such that if M = (A,S) is a nonempty model, then for
every event e in a process in b ∈ B it holds that act ∈ dom(e) and e(act) ∈ A.

Behavior models are immense information resources. A behavior model can charac-
terize a dynamic system by describing potentially an infinite collection of processes
it supports and suggesting the ways to lead the system to possible states that are not
bounded by any finite collection of states [5].

We say that M and B are, respectively, the explicit component and the implicit
component of the behavior model (M,B). That is, M models behaviors B. We also say
that a behavior model (M,∅) is informal, i.e., the implicit component of an informal
model is empty to indicate that no implicit model statement can be deduced from
M. A behavior model (M,{b}), where b ∈B, is formal. An explicit component of a
formal behavior model induces one behavior, i.e., all the implicit model statements
are deduced from M deterministically to define one behavior. Finally, a behavior
model (M,B), where | B |> 1, is semi-formal, i.e., an explicit component of a semi-
formal behavior model can be interpreted as one of the behaviors in B reflecting that
the deduction rules of the modeling language used to construct the explicit model are
nondeterministic.

An event log is a collection of traces induced by some unknown explicit compo-
nent of a behavior model; hence, the empty activity model is used as the first element
in the pair that defines an event log. Each trace in a log describes some observed
process execution. To reflect that the same trace can be observed multiple times, the
implicit component of an event log contains a multiset of traces. The multiplicity of
a trace in this multiset denotes the number of times this trace was observed. One of
the core problems studied in process mining is automatically discovering the explicit
component of a behavior model that induced a given log [1]. To support this use case,
every event in a trace is required to have the act attribute. A simulation model is an
activity model together with a finite imitation of its operations in the real world [6].
The implicit component of a simulation model contains a fraction of behavior that
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A1:
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e6={(rel, ({e4},{e9}))} e7={(rel, ({},{e10}))} e8={(rel, ({e5},{e11}))}, ,c1=

Fig. 1: Example behavior models.

can be induced by the explicit component, which constitutes the behavior imitated
during some simulation exercise. To allow traceability, each event of the implicit
component has the act attribute that refers to the activity that induced the event. A
process model is an activity model together with a set of all possible behaviors that
can be deduced from the statements the activity model is composed of [3, 19]. Note
that a behavior induced by an explicit component of a process model can be infinite,
for example, due to some cyclic process dependencies. To reflect the fact that events
in the implicit components of process models are envisioned and were not observed
in the real world, they do not have timestamps. Finally, a correlation model is a
behavior model in which every event specifies a relation between two sets of events.
Correlation models, for example alignments [2, 12], describe correspondences and
discrepancies between the events in two compared processes. Thus, each event in
the implicit component of a correlation model uses the rel attribute to specify the
matching events from two compared processes.

The top of Fig. 1 shows a process model with activity model A1 as the explicit
component, captured in BPMN. According to BPMN semantics, the diagram de-
scribes two process instances τ1 and τ2, also shown in the figure. Hence, the process
model is defined by the pair (A1,{[τ1,τ2]}). The bottom of Fig. 1 shows trace τ3,
which is composed of three events e9, e10, and e11, that describes a process that starts
with activity “Open Claim”, followed by activity “Update Claim”, and concluded
by activity “Close Claim”. The pair L = (�,{[τ5

1 ,τ
2
3 ]}) specifies a sample event

log. Event log L specifies that trace τ1 was observed five times, while trace τ3 was
observed two times. Note that this log contains traces that cannot be deduced from A1.
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Fig. 2: A process model.

Finally, one can use trace c1 from Fig. 1 to define a correlation model, for example,
(�,{[c1]}). Trace c1 relates traces τ2 and τ3 and specifies that events e4 and e5 in
trace τ2 relate to events e9 and e11 in trace τ3, respectively, while event e10 in trace
τ3 does not correspond to any event in trace τ2. Hence, c1 captures minimal discrep-
ancies between traces τ2 and τ3 and corresponds to the concept of optimal alignment
between these two traces (assuming the use of the standard cost function) [2].

A process repository is an organized collection of behavior models. Let Ure be the
set of all repository elements that are not behavior models, for example, folders for
organizing the models, and names and values of meta-data attributes of the models.

Process repository. A process repository is a pair (P,R), where P is a collection of
behavior models and R⊆Ure is a set of repository elements.

By Upr and Upq, we denote the universe of process repositories and process queries,
where a process query is an instruction that requests to retrieve artifacts from a
process repository or to manipulate a process repository. For example, a process
query may capture an instruction to replace a process in one of the behaviors of a
process model in a repository with a fresh process. Note that, to ensure consistency
between the explicit component and the implicit component, a realization of this
query may require updates in the explicit part of the corresponding behavior model.

Finally, a process querying method is a computation that given a process repository
and a process query systematically performs the query on the repository. The result
of performing a query is, again, a process repository that implements the query on
the input repository.

Process querying method. A process querying method m is a mapping from pairs,
where each pair is composed of a process repository and a process query, to
process repositories, i.e., it is a function m : Upr×Upq→Upr.

For example, a process querying method can support a process query that given a
process repository that contains the process model captured in Fig. 1 and updates it
to describe trace τ3 instead of trace τ2 to result in a process repository with a fresh
model shown in Fig. 2, which represents all the traces in log L discussed above.
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3 Process Querying Framework

In [17], we proposed the Process Querying Framework (PQF) for devising process
querying methods. Schematic visualization of the framework is shown in Fig. 3.1

We present the framework in Section 3.1. Then, Section 3.2 discusses decisions that
one must take when designing a new process querying method. Finally, Section 3.3
elaborates on the challenges associated with the design decisions and how every
process querying method is a compromise of the decisions taken.

3.1 Framework

The PQF is an abstract system of components that provide generic functionality
and can be selectively replaced to result in a new process querying method. In
Fig. 3, rectangles and ovals denote active components and passive components,
respectively; note the use of an ad-hoc notation. An active component represents an
action performed by the process querying method. In turn, a passive component is
a (collection of) data objects. Passive components serve as inputs and outputs of
actions. To show that a passive component is an input to an action, an arc is drawn
to point from the component to the action, while an arc that points from an action
to a passive component shows that the action produces the component. The dashed
lines encode the aggregation relationships. A component that is used as an input to
an action contains an adjacent component. For example, a process repository is an
aggregation of event logs, process models, correlation models, or simulation models,
refer to the figure.

The framework is composed of four parts. These parts are responsible for de-
signing process repositories and process queries (“Model, Simulate, Record and
Correlate”), preparing process queries (“Prepare”), executing process queries (“Exe-
cute”), and interpreting results of the process querying methods (“Interpret”). In the
figure, the parts are enclosed in areas denoted by the dotted borders. Next, we detail
the role of each of these parts.

Model, Record, Simulate, and Correlate. This part of the PQF is responsible for
modeling or creating behavior models and process queries. Behavior models can
be acquired in several ways. For example, they can be designed manually by an
analyst or constructed automatically using process mining [1] or process querying, as
a result of executing a query. Alternatively, an event log can be obtained by recording
the traces of an executing IT system. Finally, a behavioral model can be a result of
correlating steps of two different processes. Examples of behavior models include
process models like computer programs, business process specifications captured

1 © 2017 Elsevier B.V, Fig. 3 is reprinted from Decis. Support Syst. 100, Artem Polyvyanyy, Chun
Ouyang, Alistair Barros, Wil M. P. van der Aalst, Process querying: Enabling business intelligence
through query-based process analytics, pp 41–56, with permissions from Elsevier.
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Fig. 3: A schematic view of the Process Querying Framework [17].

in BPMN, YAWL, and BPEL notation, and formal automata and Petri net models,
event logs of IT systems [1], and correlation models like alignments [2, 12].

A process querying instruction specifies which processes, behaviors, or behavior
models should be added to, removed from, replaced in, or retrieved from which
processes, behaviors, or behavior models in a process repository. Such an instruction
is composed of a query intent that specifies the aim of the instruction and a list
of query conditions that parameterize the intent. The resulting process querying
instruction should unambiguously specify how to execute it over the process repos-
itory. For example, an instruction can specify to retrieve, or read, processes from
the repository, while its conditions detail which processes should be included in the
query result and which should be left out. We refer to an instruction captured in some
machine-readable, i.e., formal, language as a process query. The Formalizing active
component of the framework is responsible for translating process querying instruc-
tions into process queries expressed in domain-specific programming languages or
some other formalisms.

Prepare. The Prepare part of the framework is responsible for making process repos-
itories ready for efficient querying. In its current version, the framework suggests
two methods for preparing for querying, namely indexing and caching. In databases,
indexing is a technique to construct a data structure, called an index, to efficiently
retrieve data records based on some attributes. In computing, caching is a technique
to store data in a cache so that future requests to that data can be served faster, where
the stored data might be the result of an earlier computation.

An index is usually constructed offline and uses additional storage space to
maintain an extra copy, or several copies, of the process repository. It is expected that
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this additional storage will be used to speed up the execution of queries. A process
querying can also collect statistics over properties of the repository and its indexes,
referred to as process statistics in the figure. Process statistics should be used to
guide the execution of process queries. For example, a process querying method can
proceed by first executing queries over simple models to ensure that initial results
are obtained early and proposed to the user.

Caching in process querying can rely on process querying statistics to decide
which (parts of) query results should be stored for later prompt reuse. The statistics
may include aggregate information on the execution of process queries and evaluation
of process query conditions, e.g., frequencies of such executions and evaluations.
The results of the most frequent queries and evaluated query conditions can then
be put in the cache. Next time the user requests to evaluate a query or a condition
of a query stored in the cache, its result can be retrieved from the cache instead of
recomputed, which is usually more efficient. Caching decisions can rely on process
querying statistics that aims to keep track of recent frequent query executions and
query condition evaluations.

One can rely on other approaches to speed up the evaluation of process queries.
The standard approaches that can be explored include parallel computing, e.g., map-
reduce, algorithm redesign, e.g., stochastic and dynamic optimization, and hardware
acceleration, e.g., in-memory databases and computing on graphics processing units.
Note, however, that such optimization approaches are often inherent to the designs
of techniques they optimize. Even though such optimizations are clearly useful, we
request that future approaches impose as few restrictions as possible on the querying
methods they are intended to be used with.

Execute. The Execute part of the framework is responsible for executing process
queries over repositories. It comprises components for filtering process repositories,
and optimizing and executing process queries.

Filtering is used before executing a query to tag those processes, behaviors, or
models in the repository that are known to be irrelevant for the purpose of the process
query. Then, the query execution routine can skip tagged artifacts to improve the
efficiency of query processing. For instance, if a query requests to select all process
models that describe a process with an event that refers to a given activity, it makes
no sense to execute the query over models that do not contain the given activity. The
filtering is performed by the eponymous active component of the framework that
takes the repository and a query as input and produces a filtered process repository
as output. A filtered repository is a projection of the original repository with some of
its parts tagged as irrelevant for the purpose of the query processing. Clearly, to be
considered useful, a concrete Filtering component must perform filtering decisions
more efficiently than executing the query over the same parts of the repository.

The component responsible for query optimization, see the Optimizing component
in the figure, takes as input a query and all the information that can help produce
an efficient execution plan for the query. An execution plan is a list of commands
that should be carried out to execute the query using the least amount of resources
possible. Two types of optimizations are usually distinguished: logical and physical.
A logical optimization entails reformulating a given query into an equivalent but
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easier—which usually means a faster to execute—query. A physical optimization, in
turn, consists of determining efficient means for carrying out commands in a given
execution plan.

Finally, the Process Querying component takes as input an execution plan of a
query, a corresponding filtered repository, as well as available index, process statistics,
and cache, and produces a new process repository that implements the instruction
specified by the query. As a side effect of executing a query, the component updates
the process querying statistics. The filtered repository and the execution plan are
the critical inputs of the querying component, as without these inputs the querying
cannot take place, while all the other inputs are optional or can be empty.

Interpret. An outcome of a process query execution falls into two broad categories:
successful or unsuccessful. The successful outcome signifies that the querying in-
struction captured in the query was successfully implemented in the repository. The
latter situation may, for instance, arise when managing vast (possibly infinite) collec-
tions of processes described in a process model using scarce (finite) resources of a
computer that processes the query.

When a process query fails to execute because of resource limitations, one can
adopt at least two strategies to obtain a partial or the full query result. It may be
possible to reformulate the original query to give up on the precision of its results.
Alternatively, one may be able to optimize the querying method to allow handling
the special case of the original query or the class of queries the original query falls
into. The standard approaches for managing vast collections of processes include
symbolic techniques, such as binary decision diagrams, and abstractions based on
the structural model or behavior regularities.

It is often desirable to communicate the query results, successful or unsuccessful,
to the user who issued the query. The Interpret part of the framework serves this
purpose. All the active components of this part have a common goal: to contribute to
the user’s better comprehension of the querying results. The components listed in
Fig. 3 are inspired by the various means for improving comprehension of conceptual
models proposed by Lindland et al. [13]. As input, these components take the
(filtered) process repository, the query and its execution plan, and the resulting
process repository and aim to explain all the differences between the original and the
resulting repository, and the reasons for the differences.

One can use several techniques to foster the understanding of process querying
results. First, a user can understand a concept or phenomenon by inspecting, or
reading, it. One can explore various approaches to facilitate the process of reading
process query results. For instance, important aspects can be emphasized, while the
secondary aspects downplayed. Besides, the inspection activities can be supported by
a catalog of predefined explanation notes prepared by process analysts and domain
experts. Second, by presenting process querying results diagrammatically rather than
in text, their comprehension can be improved. Third, the visual representations of
process query results can be further animated, e.g., to demonstrate the dynamics of
the processes that comprise the query result. A common approach to animating the
dynamics of a process is through a token game that demonstrates the process state
evolution superposed over the diagrammatic process model. Fourth, the comprehen-
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sion of the process querying results can be stimulated by projecting away their parts,
allowing the user to focus on a limited number of aspects at a time. Fifth, one can
simulate and demonstrate to the user the processes that constitute the query result
captured in a static model. Finally, process querying results can be translated into
notations that the user is more familiar with. The implementation of these practices
is the task of the corresponding active components of the framework.

3.2 Design Decisions

A design decision is an explicit argumentation for the reasons behind a decision made
when designing a system or artifact. When instantiating the PQF to define a concrete
process querying method, one needs to take several design decisions imposed by the
framework. Next, we discuss three decisions one needs to take when configuring
the framework, namely which behavior models, which model semantics that induce
processes, and which process queries should the process querying method support.

Which behavior models to consider? An author of a process querying method must
decide which behavior models the method will support. Note that a method that
addresses querying of event logs will most likely be composed of active and passive
components of the PQF that are different from a method for querying correlation
models. Besides, the choice of supported formalisms for capturing behavior models
restricts the class of supported processes, or languages in the terminology of the the-
ory of computation [20], supported by the process querying method. For instance, if
behavior models are restricted to deterministic finite automata, the class of processes
described by the models is limited to the class of regular languages [20, 21].

Which processes to consider? A behavior model can be interpreted as such that
describes several behaviors, each induced by a different model semantics criterion.
The choice of a semantics criterion determines the correspondence between the
model and the collection of processes associated with this model. For instance, a
process model can be interpreted according to the finite, infinite, or a fair process
semantics. According to the finite process semantics, a model describes processes that
lead to terminal goal states. In contrast, an infinite process semantics accommodates
processes that never terminate, i.e., processes in which after every event there exists
some next event that gets performed. A process in which, from some state onward,
an event can get enabled for execution over and over again but never gets executed
is an unfair process. A not unfair process, as per the stated principle, is a strongly
fair process [11]. A fair process can be finite or infinite. There are different fairness
criteria for processes. Several of them, including the strong fairness criterion, are
discussed in [4]. The choice of the correspondence between models and collections of
processes they are associated with defines the problem space of the process querying
method, as it identifies the processes to consider when executing queries.

Which process queries to consider? An author of a process querying method must
decide which queries the method will support. The design of a process query consists
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of two sub-tasks of choosing the intent of the query and, subsequently, fixing its
conditions. The choice of supported process queries determines the expressiveness
of the corresponding process querying method, i.e., it defines the ability of the
method to describe and solve various problems for managing process repositories.
For example, a process querying method can support queries with the intent to read
process-related information from the repository, i.e., to retrieve processes for which
specific conditions hold. Alternatively, one can envision a process querying method
that supports queries with intents that address all the CRUD operations over models,
behaviors, or processes. To specify process queries formally, one can provide formal
descriptions of their abstract syntax, concrete syntax, and notation [14].

3.3 Challenges and Compromise

The design decisions taken when instantiating the PQF into a concrete process query-
ing method inevitably lead to challenges associated with their realization. Next, in
Section 3.3.1, we discuss three challenges associated with the design decisions dis-
cussed in Section 3.2. After discussing the challenges, in Section 3.3.2, we conclude
that every process querying method is a compromise between specific solutions taken
to address the challenges.

3.3.1 Challenges

When implementing a process querying method, one inevitably faces three challenges:
decidability, efficiency, and usefulness of the supported process queries.

Decidability. Process queries must be decidable. In other words, they must be
solvable by algorithms on a wide range of inputs. Indeed, a process query that cannot
be computed is of no help to the user. The decidability requirement poses a significant
challenge, as certain process management problems are known to be undecidable
over specific classes of inputs. For example, process queries can be expressed in
terms of temporal logic formulas [5, 18]. However, temporal logic formulas can be
undecidable over some classes of process models [9, 10].

Efficiency. Process querying aims to provide valuable insights into processes man-
aged by organizations. As part of this premise, process querying should foster the
learning of processes, behaviors, and behavior models contained in the repository
by the novice users of the repository. In other words, it should support exploratory
querying [23]. However, exploratory querying requires techniques capable of execut-
ing queries close to real-time. Therefore, another challenge of process querying is
to develop process queries that can be computed efficiently, that is, fast and using
small memory footprints. One can measure the efficiency of the process queries using
well-known techniques in computational complexity theory, which study resources,
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like computation time and storage space, required to solve computational problems
with the goal of proposing solutions to the problems that use less resources.

Suitability. Process querying methods should offer a great variety of concepts and
principles to capture and exercise in the context of process querying. Thus, the third
challenge of process querying is concerned with achieving expressiveness in terms
of capturing all the suitable (appropriate for the purpose envisioned by the users)
process queries that specify instructions for managing process repositories. Authors
of process querying methods should strive to propose designs that support all the
useful (as perceived by the users) process queries. The suitability of process querying
methods can be assessed empirically or, similar to [8], by identifying common
reoccurring patterns in specifications of process querying problems.

3.3.2 Compromise

A process querying method is identified by a collection of process queries it supports.
The selection of queries to support is driven by the considerations of decidability,
efficiency, and suitability of queries. As these considerations often forbid the method
to support all the desired queries, we refer to the phase of selecting which queries to
support and not support as the process querying compromise.

D:Decidable

E:EfficientS:Suitable

Process
Querying 
Methods

Undecidable

InefficientUnsuita
ble

Fig. 4: Process querying compromise.

The process querying compromise can
be formalized as follows. Let D be the set
of all decidable process queries. Some de-
cidable queries can be computed efficiently;
note that, in general, the decidability of cer-
tain process queries can be unknown. Let
E ⊆ D be the set of all process queries that
are not only computable but are also effi-
ciently computable. Finally, let S be the set
of all process queries that the users perceive
as suitable. Then, the queries in E ∩ S are
the queries that one should aim to support
via process querying methods. Fig. 4 demon-
strates the relations between sets D, E, and
S visually. In an ideal situation, it should hold that S⊆ E, i.e., all the suitable queries
are computable using some efficient methods. However, in practice, it is often im-
possible to fulfill the requirement of S⊆ E, or even S⊆ D. Then, one can strive to
improve the efficiency of the techniques for computing queries in (S∩D)\E, which
are the decidable and practically relevant queries for which no efficient computation
procedure is known.

The existence of such compromise differentiates process querying from data
querying. Note that data queries usually operate over finite datasets, making it
possible to implement querying using, maybe not always efficient, but certainly
effective methods.
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4 Conclusion

This chapter presents and discusses the problem of process querying. Process query-
ing aims to coordinate the efforts invested in the design, implementation, and appli-
cation of techniques, methods, and tools for retrieving and manipulating models of
processes, and the related resources, information, and data. Consequently, process
querying supports centralized activities that improve process querying practices and
suppresses reinventions of such practices in different contexts and variations. The
chapter also presents an abstract framework for designing and implementing process
querying methods. The framework consists of abstract components, each with a
dedicated role and well-defined interface, which, when instantiated and integrated,
result in a concrete process querying method. Finally, the chapter argues that every
process querying method defines a compromise between efficiently decidable and
practically relevant queries, which is unavoidably associated with challenges for
designing and implementing such methods.

The concept of process querying emerged from the observations of theory and
practice in the research discipline of BPM, and relates to other process-centric
research fields like software engineering, information systems engineering, and
computing. We envisage future applications, adaptations, and improvements of
process querying techniques contributed from within these fields. Future endeavors in
process querying will contribute to understanding the process querying compromise,
including which queries are practically relevant for the users to justify the efforts for
their design and use in practice.
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